equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.





Orbital atômico (português brasileiro) ou orbital atómica (português europeu) de um átomo é a denominação dos estados estacionários da função de onda de um elétron (funções próprias do hamiltoniano (H) na equação de Schrödinger , em que  é a função de onda).[1] Entretanto, os orbitais não representam a posição exata do elétron no espaço, que não pode ser determinada devido à sua natureza ondulatória; apenas delimitam uma região do espaço na qual a probabilidade de encontrar o elétron é mais alta.[2]

Números quânticos

  • O valor do número quântico  (número quântico principal ou primário, que apresenta os valores  [também representado por ]) define o tamanho do orbital. Quanto maior o número, maior o volume do orbital. Também é o número quântico que tem a maior influência na energia do orbital.
  • O valor do número quântico  (número quântico secundário ou azimutal, que apresenta os valores ) indica a forma do orbital e o seu momento angular. O momento angular é determinado pela equação:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

A notação científica (procedente da espectroscopia) é a seguinte:

  • , orbitais 
  • , orbitais 
  • , orbitais 
  • , orbitais 

Para os demais orbitais segue-se a ordem alfabética.

  • O valor do  (número quântico terciário ou magnético, que pode assumir os valores ) define a orientação espacial do orbital diante de um campo magnético externo. Para a projeção do momento angular diante de um campo externo, verifica-se através da equação:
  • O valor de  (número quântico magnético de spin ou spin) pode ser . O valor de  que equivale a uma valor fixo .

Pode-se decompor a função de onda empregando-se o sistema de coordenadas esféricas da seguinte forma:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Onde

  •  representa a distância do elétron até o núcleo, e
  •  a geometria do orbital.

Para a representação do orbital emprega-se a função quadrada,


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////   , já que esta é proporcional à densidade de carga e, portanto, a densidade de probabilidade, isto é, o volume que encerra a maior parte da probabilidade de encontrar o elétron ou, se preferir, o volume ou a região do espaço na qual o elétron passa a maior parte do tempo.






comprimento de onda Compton pode ser entendido como uma limitação fundamental na medida da posição de uma partícula, tomando-se as implicações da mecânica quântica e relatividade especial em conta. Isto depende da massa  da partícula.

Definições matemáticas

O comprimento de onda Compton  de uma partícula é dado por


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

,

onde

 é a constante de Planck,
 é a massa da partícula,
 é a velocidade da luz.

O valor CODATA de 2002 para o comprimento de onda Compton do elétron é 2.4263102175×10−12 m com uma incerteza padrão de 0.0000000033×10−12 m.[1] Outras partículas têm diferentes comprimentos de onda Compton.

Para ver-se isto, note-se que nós podemos medir a posição de uma partícula por incidir luz sobre ela - mas medir a posição precisamente requer luz de pequeno comprimento de onda. Luz de comprimento de onda pequeno consiste de fótons de alta energia. Se a energia destes fótons excede , quando um atinge a partícula onde cuja posição está sendo medida a colisão deve ter suficiente energia para criar uma nova partícula do mesmo tipo. Disto resulta em tornar oculta a questão da localização original da partícula.

Este argumento também mostra que o comprimento de onda Compton é a ponto de interrupção abaixo do qual a teoria quântica de campos – a qual pode descrever a criação e aniquilação de partículas – torna-se importante.

Pode-se fazer o argumento acima um tanto mais preciso como segue-se. Suponhamos que deseja-se medir a posição de um partícula dentro de uma precisão . Então a relação de incerteza para a posição e o momento diz que


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

então a incerteza no momento da partícula satisfaz


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Usando a relação relativística entre momento e energia, quando  excede  então a incerteza na energia é maior que , o que é suficiente energia paracriar outra partícula do mesmo tipo. Então, com um pouco de álgebra, nós vemos aqui uma limitação fundamental


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Assim, pelo menos dentro de uma ordem de magnitude, a incerteza na posição deve ser maior do que o comprimento de onda de Compton .

O comprimento de onda de Compton pode ser comparado com o comprimento de onda de de Broglie, o qual depende do momento de uma partícula e determina o ponto de corte entre o comportamento de partícula e onda na mecânica quântica.

O caso dos férmions

Para férmions, o comprimento de onda de Compton determina a seção transversal de interações. Por exemplo, a seção transversal para a dispersão de Thonsom de um fóton de um elétron é igual a


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

,

onde  é a constante de estrutura fina e  é o comprimento de onda de Compton do elétron. Para bósons gauge, o comprimento de onda de Compton determina a escala da interação Yukawa: desde que o fóton não tenha massa de repouso, o eletromagnetismo tem escala infinita.

O comprimento de onda de Compton do eléctron é um dos do trio de unidades de comprimento relacionadas, as outras duas sendo raio de Bohr  e o raio clássico do elétron . O comprimento de onda de Compton é obtido a partir da massa do elétron constante de Planck  e a velocidade da luz . O raio de Bohr é obtido de  e a carga do elétron . O raio clássico do elétron é obtido de  e . Qualquer um destes três comprimentos pode ser escrito em termos de qualquer outro usando a constante de estrutura fina :


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

massa de Planck é especial porque ignorando fatores de  e igualmente, o comprimento de onda de Compton para esta massa é igual a seu raio de Schwarzschild. Esta distância especial é chamada comprimento de Planck. Este é um simples caso de análise dimensional: o raio de Schwarzschild é proporcional à massa, onde o comprimento de onda de Compton é proporcional ao inverso da massa.

Comprimento de onda Compton do elétron, do próton e do nêutron

(de CODATA 2006[2])


    equação Graceli dimensional relativista  tensorial quântica de campos 


    [  /  IFF ]   G* =   /  G  /     .  /

     G  = [DR] =            .+  

    +  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


    //////

  • Elétron:[3]λC,e = 2,426 310 217 5 (33) × 10−12 m
  • Próton:[4] λC,p = 1,321 409 844 6 (19) × 10−15 m
  • Nêutron:[5] λC,n = 1,319 590 895 1 (20) × 10−15 m







concentração quântica nQ é a concentração de partícula (i.e. onúmero de partículas porunidade de volume) de um sistema onde a distância interpartícula é igual ao comprimento de onda térmico de de Broglie ou equivalentemente quando os comprimentos de onda das partículas são tangentes ("se tocam") mas não se sobrepõe.[1][2]

Efeitos quanticos tornam-se mais apreciáveis quando a concentração de partículas é maior ou igual que a concentração quântica, a qual é definida como:


equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde:
M é a massa das partículas no sistema
k é a constante de Boltzmann
T é a temperatura medida em kelvin
 é a constante de Planck reduzida

Como a concentração quântica depende da temperatura; altas temperaturas irão colocar a maioria dos sistemas no limite clássico sem estes terem uma densidade muito alta, e.g. como uma anã branca.

Comentários